Kamis, 25 Oktober 2012

KARAKTERISTIK MATEMATIKA DAN HAKEKAT PEMBELAJARAN MATEMTAIKA

Untuk memahami karakteristik daripada matematika maka harus dipahami terlebih dahulu hakekat matematika. Menurut Hudoyo (1979:96), hakekat matematika berkenaan dengan ide-ide struktur- struktur dan hubungan-hubungannya yang diatur menurut urutan yang logis. Jadi matematika berkenaan dengan konsep-konsep yang abstrak. Jika matematika dipandang sebagai struktur dari hubungan-hubungan maka simbol-simbol formal diperlukan untuk membantu memanipulasi aturan-aturan yang beroperasi di dalam struktur-struktur. Beberapa hakekat atau definisi dari matematika adalah sebagai berikut: 1. Matematika sebagai cabang ilmu pengetahuan eksak atau struktur yang teroganisir secara sistematik. Agak berbeda dengan ilmu pengetahuan yang lain, matematika merupakan suatu bangunan struktur yang terorganisir. Sebagai sebuah struktur, ia terdiri atas beberapa komponen, yang meliputi aksioma/postulat, pengertian pangkal/primitif, dan dalil/teorema (termasuk di dalamnya lemma (teorema pengantar/kecil) dan corolly/sifat). 2. Matematika sebagai alat ( tool ) Matematika juga sering dipandang sebagai alat dalam mencari solusi berbagai masalah dalam kehidupan sehari-hari. 3. Matematika sebagai pola pikir deduktif Matematika merupakan pengetahuan yang memiliki pola pikir deduktif, artinya suatu teori atau matematika dapat diterima kebenarannya apabila telah dibuktikan secara deduktif (umum). 4. Matematika sebagai cara bernalar (the way of thinking). Matematika dapat pula dipandang sebagai cara bernalar, paling tidak karena beberapa hal, seperti matematika memuat cara pembuktian yang sahih (valid), rumus-rumus atau aturan yang umum, atau sifat penalaran matematika yang sistematis. 5. Matematika sebagai bahasa artifisial. Simbol merupakan ciri yang paling menonjol dalam matematika. Bahasa matematika adalah bahasa simbol yang bersifat artifisial, yang baru memiliki arti bila dikenakan pada suatu konteks. 6. Matematika sebagai seni yang kreatif. Penalaran yang logis dan efisien serta perbendaharaan ide-ide dan pola-pola yang kreatif dan menakjubkan, maka matematika sering pula disebut sebagai seni, khususnya merupakan seni berpikir yang kreatif. Berdasarkan uraian-uraian hakikat matematika di atas maka dapat di simpulkan bahwa karakteristik- karakteristik matematika dapat dilihat pada penjelasan berikut: 1. Memiliki Kajian Objek Abstrak. 2. Bertumpu Pada Kesepakatan. 3. Berpola pikir Deduktif namun pembelajaran dan pemahaman konsep dapat diawali secara induktif melalui pengalaman peristiwa nyata atau intuisi. 4. Memiliki Simbol yang Kosong dari Arti. Rangkaian simbol-simbol dapat membentuk model matematika. 5. Memperhatikan Semesta Pembicaraan. Konsekuensi dari simbol yang kosong dari arti adalah diperlukannya kejelasan dalam lingkup model yang dipakai. 6. Konsisten Dalam Sistemnya. Dalam matematika terdapat banyak sistem. Ada yang saling terkait dan ada yang saling lepas. Dalam satu sistem tidak boleh ada kontradiksi. Tetapi antar sistem ada kemungkinan timbul kontradiksi. A. Matematika memiliki objek kajian yang abstrak. Di dalam matematika objek dasar yang dipelajari adalah abstrak, sering juga disebut sebagai objek mental. Di mana objek-objek tersebut merupakan objek pikiran yang meliputi fakta, konsep, operasi ataupun relasi, dan prinsip. Dari objek-objek dasar tersebut disusun suatu pola struktur matematika. Adapun objek-objek tersebut dapat dijelaskan sebagai berikut: 1. Fakta (abstrak) berupa konvensi-konvensi yang diungkap dengan simbol tertentu. Contoh simbol bilangan “3” sudah di pahami sebagai bilangan “tiga”. Jika di sajikan angka “3” maka sudah dipahami bahwa yang dimaksud adalah “tiga”, dan sebalikbya. Fakta lain dapat terdiri dari rangkaian simbol misalnya “3+4” sudah di pahami bahwa yang dimaksud adalah “tiga di tambah empat”. 2. Konsep (abstrak) adalah ide abstrak yang dapat digunakan untuk menggolongkan atau mengklasifikasikan sekumpulan objek. Apakah objek tertentu merupakan suatu konsep atau bukan. ”segitiga” adalah nama suatu konsep abstrak, “Bilangan asli” adalah nama suatu konsep yang lebih komplek, konsep lain dalam matematika yang sifatnya lebih kompleks misalnya “matriks”, “vektor”, “group” dan ruang metrik”. Konsep berhubungan erat dengan definisi. Definisi adalah ungkapan yang membatasi suatu konsep. Dengan adanya definisi ini orang dapat membuat ilustrasi atau gambar atau lambang dari konsep yang didefinisikan. Sehingga menjadi semakin jelas apa yang dimaksud dengan konsep tertentu. 3. Operasi (abstrak) adalah pengerjaan hitung, pengerjaan aljabar dan pengerjaan matematika yang lain. Sebagai contoh misalnya “penjumlahan”, “perkalian”, “gabungan”, “irisan”. Unsur-unsur yang dioperasikan juga abstrak. Pada dasarnya operasi dalam matematika adalah suatu fungsi yaitu relasi khusus, karena operasi adalah aturan untuk memperoleh elemen tunggal dari satu atau lebih elemen yang diketahui. 4. Prinsip (abstrak) adalah objek matematika yang komplek. Prinsip dapat terdiri atas beberapa fakta, beberapa konsep yang dikaitkan oleh suatu relasi ataupun operasi. Secara sederhana dapatlah dikatakan bahwa prinsip adalah hubungan antara berbagai objek dasar matematika. Prinsip dapat berupa “aksioma”, “teorema”, “sifat” dan sebagainya. B. Bertumpu pada kesepakatan Dalam matematika kesepakatan merupakan tumpuan yang amat penting. Kesepakatan yang amat mendasar adalah aksioma dan konsep primitif. Aksioma diperlukan untuk menghindarkan berputar-putar dalam pembuktian. Sedangkan konsep primitif diperlukan untuk menghindarkan berputar-putar dalam pendefinisian. Aksioma juga disebut sebagai postulat (sekarang) ataupun pernyataan pangkal (yang sering dinyatakan tidak perlu dibuktikan). Beberapa aksioma dapat membentuk suatu sistem aksioma, yang selanjutnya dapat menurunkan berbagai teorema. Dalam aksioma tentu terdapat konsep primitif tertentu. Dari satu atau lebih konsep primitif dapat dibentuk konsep baru melalui pendefinisian. C. Berpola pikir deduktif Dalam matematika sebagai “ilmu” hanya diterima pola pikir deduktif. Pola pikir deduktif secara sederhana dapat dikatakan pemikiran “yang berpangkal dari hal yang bersifat umum diterapkan atau diarahkan kepada hal yang bersifat khusus”. Pola pikir deduktif ini dapat terwujud dalam bentuk yang amat sederhana tetapi juga dapat terwujud dalam bentuk yang tidak sederhana. Contoh: Banyak teorema dalam matematika yang “ditemukan” melalui pengamatan-pengamatan khusus, misalnya Teorema Phytagoras. Bila hasil pengamatan tersebut dimasukkan dalam suatu struktur matematika tertentu, maka teorema yang ditemukan itu harus dibuktikan secara deduktif antara lain dengan menggunakan teorema dan definisi terdahulu yang telah diterima dengan benar. Dari contoh prinsip diatas, bahwa urutan konsep yang lebih rendah perlu dihadirkan sebelum abstraksi selanjutnya secara langsung. Supaya hal ini bisa bermanfaat, bagaimanapun, sebelum kita mencoba mengkomunikasikan konsep yang baru, kita harus menemukan apakontribusi konsepnya; dan begitu seterusnya, hingga kita mendapat konsep primer yang lain. D. Memiliki simbol yang kosong dari arti Dalam matematika jelas terlihat banyak sekali simbol yang digunakan, baik berupa huruf ataupun bukan huruf. Rangkaian simbol-simbol dalam matematika dapat membentuk suatu model matematika. Model matematika dapat berupa persamaan, pertidaksamaan, bangun geometri tertentu, dsb. Huruf-huruf yang digunakan dalam model persamaan, misalnya x + y = z belum tentu bermakna atau berarti bilangan, demikian juga tanda + belum tentu berarti operasi tamba untuk dua bilangan. Makna huruf dan tanda itu tergantung dari permasalahan yang mengakibatkan terbentuknya model itu. Jadi secara umum huruf dan tanda dalam model x + y = z masih kosong dari arti, terserah kepada yang akan memanfaatkan model itu. Kosongnya arti itu memungkinkan matematika memasuki medan garapan dari ilmu bahasa (linguistik). E. Memperhatikan semesta pembicaraan Sehubungan dengan penjelasan tentang kosongnya arti dari simbol-simbol dan tanda-tanda dalam matematika diatas, menunjukkan dengan jelas bahwa dalam memggunakan matematika diperlukan kejelasan dalam lingkup apa model itu dipakai. Bila lingkup pembicaraanya adalah bilangan, maka simbol-simbol diartikan bilangan. Bila lingkup pembicaraanya transformasi, maka simbol-simbol itu diartikan suatu transformasi. Lingkup pembicaraan itulah yang disebut dengan semesta pembicaraan. Benar atau salahnya ataupun ada tidaknya penyelesaian suatu model matematika sangat ditentukan oleh semesta pembicaraannya. Contoh: Dalam semesta pembicaraan bilangan bulat, terdapat model 2x = 5. Adakah penyelesaiannya? Kalau diselesaikan seperti biasa, tanpa menghiraukan semestanya akan diperoleh hasil x = 2,5. Tetapi kalu suda ditentukan bahwa semestanya bilangan bulat maka jawab x = 2,5 adalah salah atau bukan jawaban yang dikehendaki. Jadi jawaban yang sesuai dengan semestanya adalah “tidak ada jawabannya” atau penyelesaiannya tidak ada. Sering dikatakan bahwa himpunan penyelesaiannya adalah “himpunan kosong”. F. Konsisten dalam sistemnya Dalam matematika terdapat banyak sistem. Ada sistem yang mempunyai kaitan satu sama lain, tetapi juga ada sistem yang dapat dipandang terlepas satu sama lain. Misal sistem-sistem aljabar, sistem-sistem geometri. Sistem aljabar dan sistem geometri tersebut dapat dipandang terlepas satu sama lain, tetapi dalam sistem aljabar sendiri terdapat beberapa sistem yang lebih “kecil” yang terkait satu sama lain. Demikian juga dalam sistem geometri, terdapat beberapa sistem yang “kecil” yang berkaitan satu sama lain. Suatu teorema ataupun suatu definisi harus menggunakan istilah atau konsedp yang telah ditetapkan terlebih dahulu. Konsistensi itu baik dalam makna maupun dalam hal nilai kebenarannya. Kalau telah ditetapkan atau disepakati bahwa a + b = x dan x + y = p, maka a + b + y haruslah sama dengan p. Hakikat Pembelajaran Matematika Mengetahui matematika adalah melakukan matematika. Dalam belajar matematika perlu untuk menciptakan situasi-situasi di mana siswa dapat aktif, kreatif dan responsif secara fisik pada sekitar. Untuk belajar matematika siswa harus membangunnya untuk diri mereka. hanya dapat dilakukan dengan eksplorasi, membenarkan, menggambarkan, mendiskusikan, menguraikan, menyelidiki, dan pemecahan masalah (Countryman, 1992: 2). Selanjutnya Goldin (Sri Wardhani, 2004: 6) matematika dan dibangun oleh manusia, sehingga dalam pembelajaran matematika, pengetahuan matematika harus dibangun oleh siswa. Pembelajaran matematika menjadi lebih efektif jika guru memfasilitasi siswa menemukan dan memecahkan masalah dengan menerapkan pembelajaran bermakna. Dalam pembelajaran matematika, konsep yang akan dikonstruksi siswa sebaiknya dikaitkan dengan konteks nyata yang dikenal siswa dan konsep yang dikonstruksi siswa ditemukan sendiri oleh siswa. Menurut Freudental (Gravemeijer, 1994: 20) matematika merupakan aktivitas insani (human activities) dan pembelajaran matematika merupakan proses penemuan kembali. Ditambahkan oleh de Lange (Sutarto Hadi, 2005: 19) proses penemuan kembali tersebut harus dikembangkan melalui penjelajahan berbagai persoalan dunia real. Masalah konteks nyata (Gravemeijer,1994: 123) merupakan bagian inti dan dijadikan starting point dalam pembelajaran matematika. Konstruksi pengetahuan matematika oleh siswa dengan memperhatikan konteks itu berlangsung dalam proses yang oleh Freudenthal dinamakan reinvensi terbimbing (guided reinvention). Pembelajaran matematika sebaik dimulai dari masalah yang kontekstual. Sutarto Hadi (2006: 10) menyatakan bahwa masalah kontekstual dapat digali dari: (1) situasi personal siswa, yaitu yang berkenaan dengan kehidupan sehari-hari siswa, (2) situasi sekolah/akademik, yaitu berkaitan dengan kehidupan akademik di sekolah dan kegiatan-kegiatan dalam proses pembelajaran siswa, (3) situasi masyarakat, yaitu yang berkaitan dengan kehidupan dan aktivitas masyarakat sekitar siswa tinggal, dan (4) situasi saintifik/matematik, yaitu yang berkenaan dengan sains atau matematika itu sendiri. Terkait dengan aktivitas matematisasi dalam belajar matematika, Freudenthal (Van den Heuvel, 1996: 11) menyebutkan dua jenis matematisasi, yaitu matematisasi horizontal dan vertikal dengan penjelasan sebagai berikut “Horizontal mathematization involves going from the world of life into the world of symbol, while vertical mathematization means moving within the world of symbol”. Pernyataan tersebut menjelaskan bahwa matematisasi horizontal meliputi proses transformasi masalah nyata/sehari-hari ke dalam bentuk simbol, sedangkan matematisasi vertikal merupakan proses yang terjadi dalam lingkup simbol matematika itu sendiri. Gravemeijer (1994: 93) mengemukakan bahwa dalam proses matematisasi horizontal, siswa belajar mematematisasi masalah-masalah kontekstual. Pada mulanya siswa akan memecahkan masalah secara informal (menggunakan bahasa mereka sendiri). Kemudian setelah beberapa waktu dengan proses pemecahan masalah yang serupa (melalui simplifikasi dan formalisasi), siswa akan menggunakan bahasa yang lebih formal dan diakhiri dengan proses siswa akan menemukan suatu algoritma. Proses yang dilalui siswa sampai menemukan algoritma disebut matematisasi vertikal. Menurut Sutarto Hadi (2005: 21) dalam matematisasi horizontal, siswa mulai dari masalah-masalah kontekstual mencoba menguraikan dengan bahasa dan simbol yang dibuat sendiri oleh siswa, kemudian menyelesaikan masalah kontekstual tersebut. Dalam proses ini, setiap siswa dapat menggunakan cara mereka sendiri yang mungkin berbeda dengan siswa yang lain, sedangkan dalam matematisasi vertikal, siswa juga mulai dari masalah-masalah kontekstual, tetapi dalam jangka panjang siswa dapat menyusun prosedur tertentu yang dapat digunakan untuk meyelesaiakan masalah-masalah sejenis secara langsung, tanpa menggunakan bantuan konteks. Contoh matematisasi horizontal adalah pengidentifikasian, perumusan, dan pemvisualisasian masalah dengan cara-cara yang berbeda oleh siswa. Contoh matematisasi vertikal adalah presentasi hubungan-hubungan dalam rumus, menghaluskan dan menyesuaikan model matematika, penggunaan model-model yang berbeda, perumusan model matematika dan penggeneralisasian. Zulkardi (2006: 6) menyatakan pembelajaran seharusnya tidak diawali dengan sistem formal, melainkan diawali dengan fenomena di mana konsep tersebut muncul dalam kenyataan sebagai sumber formasi konsep. Menurut de Lange (1987: 2) proses pengembangan konsep-konsep dan ide-ide matematika berawal dari dunia nyata dan pada akhirnya merefleksikan hasil-hasil yang diperoleh dalam matematika kembali ke dunia nyata. Berdasarkan uraian di atas maka secara umum Hakekat Pembelajaran Matematika sebagai berikut: Matematika pelajaran tentang suatu pola/ susunan dan hubungan Matematika adalah cara berfikir Matematika adalah bahasa Matematika adalah suatu alat Matematika adalah suatu seni

1 komentar: